
1

SHA-160: A Truncation Mode

for SHA256

(and most other hashes)

John Kelsey, NIST

Halloween Hash Bash 2005

2

What’s a Truncation Mode?

• Rule for chopping bits off a hash output

• We have a big hash fn we trust,

Like SHA256

• We need a smaller hash output

Like 160 bits

• We need to specify how this is done

– Interoperability and security reasons

3

Why Do We Need One?

• Need drop in replacement for SHA1 (MD5?)

• Have unbroken hashes of wrong size

– ECDSA/DSA key sizes

– File and protocol formats

• Obvious approach:

Truncate SHA256/SHA512

• This has been done before:

Snefru, Tiger, SHA384, SHA224

4

Our Proposal in a Nutshell
H(X,M) = hash M from initial value X

• Start with different IV for each
truncation length n:

n has fixed-length representation
IVT

n = H(IV xor 0xccc…c,n)

• Run bigger hash normally
 HT

n(m) = truncate(H(IVT
n, m),n)

• Generic: Any n, many big hashes

– (Rivest comment to SHA224)

5

Intuition:

Why should this be okay?

• If hash “good”, seems like truncation

should be good, too.

– Fits our intuition about hash functions

– Easy proof in Random Oracle Model

– Prior art suggests other people agree

• So, is intuition correct here?

6

Security Considerations

• Issue #1: Related hash outputs

– HT
n(X) ! H(X’)

• Issue #2: Can we safely truncate?

– No reduction proof

– “Near collisions”

7

Issue #1: Related Outputs
Why we need IVT

n!IV

What if IVT
n =IV?

Then we get collision before truncation:

HT
160(M) = ABCDE

HT
192(M) = ABCDEF

8

Does This Matter?

A Common KDF
• KDF(S,P,n):

– T = “”

– for j = 1 to n:

T = T || hash(S||P||j)

• Two people use different truncations:

– Result: Two closely related keys

“AAAABBBBCCCCDDDD”

“AAABBBCCCDDD”

• Very unintuitive property!

– Related key attack? Protocol problem?

9

Broader Issue: Related Outputs

HT
n(m) = truncate(H(IVT

n, m),n)

• What if HT
n(m) ! H(m’)?

– Broader property: can’t prove it won’t
happen

– Narrow property: collision before truncation

10

Does Our Scheme Prevent This?

We prevent collision before truncation:

• Can’t choose M’ -> IVT
n (preimage)

• Can’t cause intermediate collision

(DM constr. proof, collision-resistance)

• Can do DM-like proof here

11

Issue #2: Can We Safely

Truncate?

• No reduction proof

• Example attack techniques to break

truncated hashes

– Biham/Chen: Near Collisions

– Knudsen: Truncated Differentials

• But it still looks okay….

12

Truncation can make a strong

hash weak!

• Let:

G(x) = 256 bit hash

F(x) = Truncate(G(x),160).

• Question: Can we reduce

“G is a good 256-bit hash function”

to

“F is a good 160-bit hash function”?

• Answer: NO!

We can show a counterexample!

13

How to break F

without breaking G
• Suppose can find “near-collisions” for G:

 G(X)=ABCDEFGH

 G(Y)=ABCDEXYZ

– ALWAYS collide in first 160 bits

– NEVER collide in last 96 bits

• We do break F(X) = Truncate(G(X),160)

• We don’t break G(X)

Result: No reduction from G() to F()

14

Near Collisions

• Is this just a proof problem?

NO!

• Biham/Chen Crypto 2004 paper on
near-collisions for SHA0.

• General Techniques:

– truncated differentials, impossible diffs.

abcdefgh --> 00000xyz

15

But is it okay?

• This is major question: Is there a threat

to truncating SHA256?

• If we found near-collision in SHA256,

this would call SHA256 into question….

– No obvious attacks so far

• Note: Truncating to 160 bits, we only

care about attacks < 280 work!

16

Alternative: Block Near Collisions

• We could postprocess hash output

before truncation

– Need extra assumption to solve proof prob.

• Gideon Yuval suggestion:

– Process one or more fixed blocks after end

– Doesn’t solve proof problem

–May block attack

17

Conclusions

• We have a proposal for a truncated

hash mode

• We can’t do a reduction proof to the

original hash directly

– We need extra assumption about strength

of truncated output

• We could make changes to address

threat of near-collisions

• We need feedback: Will SHA256

support this?

Truncation Mode for SHA

John Kelsey
National Institute of Standards and Technology

john.kelsey(at)nist.gov

ABSTRACT

Recent cryptanalytic results have made the use of SHA1 potentially dangerous.
The obvious near-term strategy is a move to SHA256. However, there are many
cryptosystems (such as DSA and ECDSA) which cannot handle changes in hash
function output, and in many, it is hard to justify rolling out new key sizes to deal
with a cryptanalyzed hash function. For these reasons, we propose a general
truncation mode for X9-approved hash functions built (broadly) on the Damgard-
Merkle construction. The mode specifies a different initial chaining value for
each choice of hash function to be truncated and truncation length, generalizing
the approach taken for SHA384 and SHA224.

